login
A032526
a(n) = floor(5*n^2/2).
1
0, 2, 10, 22, 40, 62, 90, 122, 160, 202, 250, 302, 360, 422, 490, 562, 640, 722, 810, 902, 1000, 1102, 1210, 1322, 1440, 1562, 1690, 1822, 1960, 2102, 2250, 2402, 2560, 2722, 2890, 3062, 3240, 3422, 3610, 3802, 4000, 4202, 4410, 4622, 4840, 5062
OFFSET
0,2
FORMULA
a(n) = 2n^2 + floor(n^2/2). [Wesley Ivan Hurt, Jun 14 2013]
G.f.: 2*x*(1+3*x+x^2)/((1+x)*(1-x)^3). [Bruno Berselli, Jun 14 2013]
a(n) = 2*A032527(n). [Bruno Berselli, Jun 14 2013]
MAPLE
A032526:=n->floor(5*n^2/2): seq(A032526(n), n=0..100); # Wesley Ivan Hurt, Feb 03 2017
MATHEMATICA
Table[Floor[5 n^2/2], {n, 0, 50}] (* Bruno Berselli, Jun 14 2013 *)
LinearRecurrence[{2, 0, -2, 1}, {0, 2, 10, 22}, 50] (* Harvey P. Dale, Dec 14 2016 *)
PROG
(Magma) [Floor(5*n^2/2): n in [0..50]]; // Bruno Berselli, Jun 14 2013
CROSSREFS
Cf. A032527.
Sequence in context: A065450 A090288 A331132 * A294538 A096183 A218612
KEYWORD
nonn,easy
STATUS
approved