login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concentric pentagonal numbers: floor( 5*n^2 / 4 ).
24

%I #67 Jan 16 2023 08:17:41

%S 0,1,5,11,20,31,45,61,80,101,125,151,180,211,245,281,320,361,405,451,

%T 500,551,605,661,720,781,845,911,980,1051,1125,1201,1280,1361,1445,

%U 1531,1620,1711,1805,1901,2000,2101,2205,2311,2420,2531,2645,2761,2880,3001

%N Concentric pentagonal numbers: floor( 5*n^2 / 4 ).

%C Also A033429 and A062786 interleaved. - _Omar E. Pol_, Sep 28 2011

%C Partial sums of A047209. - _Reinhard Zumkeller_, Jan 07 2012

%C From _Wolfdieter Lang_, Aug 06 2013: (Start)

%C a(n) = -N(-floor(n/2),n) with the N(a,b) = ((2*a+b)^2 - b^2*5)/4, the norm for integers a + b*omega(5), a, b rational integers, in the quadratic number field Q(sqrt(5)), where omega(5) = (1 + sqrt(5))/2 (golden section).

%C a(n) = max({|N(a,n)|,a = -n..+n}) = |N(-floor(n/2),n)| = n^2 + n*floor(n/2) - floor(n/2)^2 = floor(5*n^2/4) (the last eq. checks for even and odd n). (End)

%H Vincenzo Librandi, <a href="/A032527/b032527.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(n) = 5*n^2/4+((-1)^n-1)/8. - _Omar E. Pol_, Sep 28 2011

%F G.f.: x*(1+3*x+x^2)/(1-2*x+2*x^3-x^4). - _Colin Barker_, Jan 06 2012

%F a(n) = a(-n); a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>0, a(-1) = 1, a(0) = 0, a(1) = 1, a(2) = 5, n >= 3. (See the _Bruno Berselli_ recurrence and a general comment for primes 1 (mod 4) under A227541). - _Wolfdieter Lang_, Aug 08 2013

%F a(n) = Sum_{j=1..n} Sum{i=1..n} ceiling((i+j-n+1)/2). - _Wesley Ivan Hurt_, Mar 12 2015

%F Sum_{n>=1} 1/a(n) = Pi^2/30 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - _Amiram Eldar_, Jan 16 2023

%e From _Omar E. Pol_, Sep 28 2011 (Start):

%e Illustration of initial terms (In a precise representation the pentagons should appear strictly concentric):

%e .

%e . o

%e . o o

%e . o o o o

%e . o o o o o o

%e . o o o o o o o o o

%e . o o o o o o o o o o

%e . o o o o o o o o o o o o o

%e . o o o o o o o o

%e . o o o o o o o o o o o o o o o

%e .

%e . 1 5 11 20 31

%e .

%e (End)

%p A032527:=n->5*n^2/4+((-1)^n-1)/8: seq(A032527(n), n=0..100); # _Wesley Ivan Hurt_, Mar 12 2015

%t Table[Round[5n^2/4], {n, 0, 39}] (* _Alonso del Arte_, Sep 28 2011 *)

%o (PARI) a(n)=5*n^2>>2 \\ _Charles R Greathouse IV_, Sep 28 2011

%o (Magma) [5*n^2/4+((-1)^n-1)/8: n in [0..50]]; // _Vincenzo Librandi_, Sep 29 2011

%o (Haskell)

%o a032527 n = a032527_list !! n

%o a032527_list = scanl (+) 0 a047209_list

%o -- _Reinhard Zumkeller_, Jan 07 2012

%o (Python)

%o def A032527(n): return 5*n**2>>2 # _Chai Wah Wu_, Jul 30 2022

%Y Cf. A000290, A032528, A077043, A195041. Column 5 of A195040. [_Omar E. Pol_, Sep 28 2011]

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E New name from _Omar E. Pol_, Sep 28 2011