login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036666
Numbers k such that 5*k + 1 is a square.
18
0, 3, 7, 16, 24, 39, 51, 72, 88, 115, 135, 168, 192, 231, 259, 304, 336, 387, 423, 480, 520, 583, 627, 696, 744, 819, 871, 952, 1008, 1095, 1155, 1248, 1312, 1411, 1479, 1584, 1656, 1767, 1843, 1960, 2040, 2163, 2247, 2376, 2464, 2599, 2691
OFFSET
1,2
COMMENTS
Third differences are 4, -6, 8, -10, 12, -14, 16, -18, 20, -22, 24, -26, 28, ...
X values of solutions to the equation 5*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007
Also, numbers 5*i^2 + 2*i for integer i. The characteristic function is A205633(n). - Jason Kimberley, Nov 15 2012
From Gary W. Adamson, Sep 22 2019: (Start)
Match the values a(n) with the squares 5k + 1 as follows:
3,....7,....16,....24,... .a, a, a, a,...
16,...36,....81,...121,... (base).
Then 1/5 in the matching base is equal to .a, a, a,...
Example: 1/5 in base 36 is equal to .7, 7, 7, 7...
Check: 7/36 + 7/36^2 = 259/1296 = .199845...; close to 1/5.
(End)
LINKS
S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See D(q).
FORMULA
G.f.: x*(3 + 4*x + 3*x^2) / ((1 - x)*(1 - x^2)).
a(n) has the form ((5*m + 1)^2 - 1)/5 if n is odd; a(n) has the form ((5*m + 4)^2 - 1)/5 if n is even.
a(2*k) = k*(5*k + 2), a(2*k + 1) = 5*k^2 + 8*k + 3. - Mohamed Bouhamida, Nov 06 2007
a(n+1) = n^2 + n + ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
From Bruno Berselli, Nov 27 2010: (Start)
a(n) = (10*n*(n - 1)+(2*n - 1)*(-1)^n + 1)/8.
5*a(n) + 1 = A047209(n)^2. (End)
a(n) = Sum_{k=0..n} k + A109043(k). - Jon Maiga, Nov 28 2018
E.g.f.: (exp(x)*(1 + 10*x^2) - exp(-x)*(1 + 2*x))/8. - Franck Maminirina Ramaharo, Nov 29 2018
From Amiram Eldar, Mar 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/2.
Sum_{n>=2} (-1)^n/a(n) = 5*(log(5)-1)/4 - sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). (End)
MAPLE
seq(n^2+n+ceil(n/2)^2, n=0..46); # Gary Detlefs, Feb 23 2010
MATHEMATICA
(Select[ Range[121], Mod[ #, 5] == 1 || Mod[ #, 5] == 4 &]^2 - 1)/5 (* Robert G. Wilson v, Jun 23 2004 *)
Flatten[Position[5*Range[0, 3000]+1, _?(IntegerQ[Sqrt[#]]&)]]-1 (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 7, 16, 24}, 50] (* Harvey P. Dale, Feb 13 2018 *)
Accumulate[Table[n + LCM[n, 2], {n, 0, 121}]] (* Jon Maiga, Nov 28 2018 *)
PROG
(PARI) a(n)=n^2+n+ceil(n/2)^2
(Magma) [(n-1)^2+(n-1)+Ceiling((n-1)/2)^2 : n in [1..50]]; // Wesley Ivan Hurt, Jun 05 2014
(GAP) List([1..50], n->(10*n*(n-1)+(2*n-1)*(-1)^n+1)/8); # Muniru A Asiru, Nov 28 2018
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
EXTENSIONS
Better description and additional formula from Santi Spadaro, Jul 12 2001
STATUS
approved