login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036667
Numbers of the form 2^i*3^j, i+j even.
6
1, 4, 6, 9, 16, 24, 36, 54, 64, 81, 96, 144, 216, 256, 324, 384, 486, 576, 729, 864, 1024, 1296, 1536, 1944, 2304, 2916, 3456, 4096, 4374, 5184, 6144, 6561, 7776, 9216, 11664, 13824, 16384, 17496, 20736, 24576, 26244, 31104, 36864, 39366
OFFSET
1,2
LINKS
FORMULA
A069352(a(n)) mod 2 = 0. - Reinhard Zumkeller, May 16 2015
Sum_{n>=1} 1/a(n) = 7/4. - Amiram Eldar, Feb 18 2021
MATHEMATICA
max = 40000;
Reap[Do[k = 2^i 3^j; If[k <= max && EvenQ[i+j], Sow[k]], {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}]][[2, 1]] // Union (* Jean-François Alcover, Aug 04 2018 *)
PROG
(Haskell)
a036667 n = a036667_list !! (n-1)
a036667_list = filter (even . flip mod 2 . a001222) a003586_list
-- Reinhard Zumkeller, May 16 2015
CROSSREFS
Complement of A257999 with respect to A003586.
Intersection of A028260 and A003586.
Cf. A025620 (subsequence), A069352, A022328, A022329.
Sequence in context: A189484 A155567 A225377 * A371843 A056016 A231997
KEYWORD
nonn
EXTENSIONS
Offset corrected by Reinhard Zumkeller, May 16 2015
STATUS
approved