login
A069352
Total number of prime factors of 3-smooth numbers.
14
0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 4, 3, 5, 4, 5, 4, 6, 5, 4, 6, 5, 7, 6, 5, 7, 6, 5, 8, 7, 6, 8, 7, 6, 9, 8, 7, 6, 9, 8, 7, 10, 9, 8, 7, 10, 9, 8, 11, 7, 10, 9, 8, 11, 10, 9, 12, 8, 11, 10, 9, 12, 8, 11, 10, 13, 9, 12, 11, 10, 13, 9, 12, 11, 14, 10, 13, 9, 12, 11, 14, 10, 13, 12, 15, 11
OFFSET
1,4
COMMENTS
a(n) = A001222(A003586(n));
a(n) = A022328(n) + A022329(n);
A086414(n) <= A086415(n) <= a(n).
FORMULA
a(n) = i+j for 3-smooth numbers n = 2^i*3^j (A003586).
a(n) = A001222(A033845(n))-2. - Enrique Pérez Herrero, Jan 04 2012
MATHEMATICA
smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; PrimeOmega /@ smoothNumbers[3, 10^5] (* Jean-François Alcover, Nov 11 2016 *)
PROG
(Haskell)
a069352 = a001222 . a003586 -- Reinhard Zumkeller, May 16 2015
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 18 2002
EXTENSIONS
Edited by N. J. A. Sloane, Oct 27 2008 at the suggestion of R. J. Mathar.
STATUS
approved