login
A033845
Numbers k of the form 2^i*3^j, where i and j >= 1.
73
6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664
OFFSET
1,1
COMMENTS
This sequence is easily confused with A003586, which gives numbers of the form 2^i*3^j with i, j >= 0, and is one-sixth of the present sequence. . Don't simply say "numbers of the form 2^i*3^j", but specify which sequence you mean. - N. J. A. Sloane, May 26 2024
Solutions to phi(n)=n/3 [See J-M. de Koninck & A. Mercier, problème 733].
Numbers n such that Sum_{d prime divisor of n} 1/d = 5/6. - Benoit Cloitre, Apr 13 2002
Also n such that Sum_{d|n} mu(d)^2/d = 2. - Benoit Cloitre, Apr 15 2002
Complement of A006899 with respect to A003586. - Reinhard Zumkeller, Sep 25 2008
In the sieve of Eratosthenes, if one crosses numbers off multiple times, these numbers are crossed off twice, first for 2 and then for 3. - Alonso del Arte, Aug 22 2011
Subsequence of A051037. - Reinhard Zumkeller, Sep 13 2011
Numbers n such that Sum_{d|n} A008683(d)*A000041(d) = 7. - Carl Najafi, Oct 19 2011
Numbers n such that Sum_{d|n} A008683(d)*A000700(d) = 2. - Carl Najafi, Oct 20 2011
Solutions to the equation A001615(x) = 2x. - Enrique Pérez Herrero, Jan 02 2012
So these numbers are called Psi-perfect numbers [see J-M. de Koninck & A. Mercier, problème 654]. - Bernard Schott, Nov 20 2020
REFERENCES
J-M. de Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, 2004, Problème 733, page 94.
J-M. de Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, 2004, Problème 654, page 85.
LINKS
FORMULA
Six times the 3-smooth numbers (A003586). - Ralf Stephan, Apr 16 2004
A086411(a(n)) - A086410(a(n)) = 1. - Reinhard Zumkeller, Sep 25 2008
A143201(a(n)) = 2. - Reinhard Zumkeller, Sep 13 2011
a(n) = 2^A191475(n) * 3^A191476(n). - Zak Seidov, Nov 01 2013
Sum_{n>=1} 1/a(n) = 1/2. - Amiram Eldar, Oct 13 2020
MATHEMATICA
mx = 12000; Sort@ Flatten@ Table[2^i*3^j, {i, Log[2, mx]}, {j, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a033845 n = a033845_list !! (n-1)
a033845_list = f (singleton (2*3)) where
f s = m : f (insert (2*m) $ insert (3*m) s') where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 13 2011
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim\2)\log(3), N=6*3^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 02 2012
(Python)
from sympy import integer_log
def A033845(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1))
return 6*bisection(f, n, n) # Chai Wah Wu, Sep 15 2024
(Python) # faster for initial segment of sequence
import heapq
from itertools import islice
def A033845gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3]
while True:
v = heapq.heappop(h)
if v != oldv:
yield 6*v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A033845gen(), 50))) # Michael S. Branicky, Sep 18 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 31 2010 and May 26 2024.
STATUS
approved