login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244193
Numbers n such that the difference between the greatest prime divisor of n and the sum of the other distinct prime divisors is equal to +-1.
1
6, 12, 18, 24, 36, 48, 54, 72, 96, 105, 108, 144, 162, 192, 216, 231, 288, 315, 324, 330, 384, 385, 429, 432, 455, 462, 486, 525, 546, 576, 648, 660, 663, 693, 735, 768, 864, 910, 924, 935, 945, 969, 972, 990, 1092, 1105, 1122, 1152, 1235, 1287, 1296, 1309
OFFSET
1,1
COMMENTS
The sequence A215142 is included in this sequence.
LINKS
EXAMPLE
105 is in the sequence because 105 = 3*5*7 and 7 - (3 + 5) = 7 - 8 = -1;
231 is in the sequence because 231 = 3 * 7 * 11 and 11 - (3 + 7) = 11 - 10 = 1.
MAPLE
filter:= proc(n) local P, pmax;
P:= numtheory[factorset](n);
abs(convert(P, `+`)-2*max(P))=1
end proc;
select(filter, [$1..10000]); # Robert Israel, Jun 23 2014
MATHEMATICA
fpdQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]}, Max[f]-Total[Most[f]]==1]; gpdQ[n_]:=Module[{g=Transpose[FactorInteger[n]][[1]]}, Max[g]-Total[Most[g]]==-1]; Union[Select[Range[2, 3000], fpdQ ], Select[Range[2, 3000], gpdQ ]]
dbgQ[n_]:=Module[{fi=FactorInteger[n][[All, 1]]}, Abs[fi[[-1]]-Total[ Most[ fi]]]==1]; Select[Range[2, 1500], dbgQ] (* Harvey P. Dale, Jan 01 2020 *)
CROSSREFS
Sequence in context: A182302 A358757 A353530 * A329878 A215142 A033845
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 22 2014
STATUS
approved