login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244194
Numbers n such that the difference between the greatest prime divisor of n^2 + 1 and the sum of the other distinct prime divisors is equal to +-1.
2
268, 411, 606, 657, 1269, 3411, 6981, 8844, 9133, 10509, 28862, 46818, 75163, 81668, 88733, 89238, 107047, 111968, 125793, 143382, 150522, 155317, 179343, 185363, 214547, 222173, 241710, 269051, 305333, 367830, 397387, 492258, 634251, 719379, 724315, 763267
OFFSET
1,1
LINKS
EXAMPLE
268 is in the sequence because 268^2 + 1 = 5^2*13^2*17 and 17 - (13 + 5) = 17 - 18 = -1;
411 is in the sequence because 411^2 + 1 = 2 * 13 * 73 * 8 and 89 - (2 + 13 + 73) = 89 - 88 = 1.
MATHEMATICA
fpdQ[n_]:=Module[{f=Transpose[FactorInteger[n^2+1]][[1]]}, Max[f]-Total[Most[f]]==1]; gpdQ[n_]:=Module[{g=Transpose[FactorInteger[n^2+1]][[1]]}, Max[g]-Total[Most[g]]==-1]; Union[Select[Range[2, 10^6], fpdQ ], Select[Range[2, 10^6], gpdQ ]]
d1Q[n_]:=Module[{c=TakeDrop[FactorInteger[n^2+1][[All, 1]], -1]}, Abs[ c[[1]] - Total[c[[2]]]]=={1}]; Select[Range[800000], d1Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 06 2018 *)
PROG
(Magma) sol:=[]; m:=1; for n in [6..770000] do fp:=PrimeDivisors(n^2+1); big:=Max(fp); if #fp ge 2 and Abs(2*big-&+fp) eq 1 then sol[m]:=n; m:=m+1; end if; end for; sol; // Marius A. Burtea, Aug 27 2019
CROSSREFS
Cf. A002522.
Sequence in context: A236740 A278382 A062037 * A096613 A304388 A234878
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 22 2014
STATUS
approved