OFFSET
2,2
COMMENTS
21 and 23 are tied with 4-digit primes so a(4) = 0.
EXAMPLE
Of the primes with 3 digits, the most common 2 digit ending is 57. Thus a(3) = 57.
PROG
(Python)
import sympy
from sympy import isprime
def end(d, n):
..lst = []
..for k in range(10**(d-1), 10**d):
....num = ''
....count = 0
....for i in range(10**(n-d-1), 10**(n-d)):
......if isprime(int(str(i)+str(k))):
........count += 1
....lst.append(count)
..a = max(lst)
..lst[lst.index(a)] = 0
..b = max(lst)
..if a == b:
....return 0
..else:
....return max(a, b) + 10**(d-1)
n = 3
while n < 10:
..print(end(2, n), end=', ')
..n += 1
CROSSREFS
KEYWORD
nonn,base,hard,more
AUTHOR
Derek Orr, Jun 22 2014
EXTENSIONS
a(9) from Tom Edgar, Jun 24 2014
a(10)-a(12) from Hiroaki Yamanouchi, Jul 11 2014
a(13) from Marek Hubal, Mar 04 2019
STATUS
approved