|
|
A006899
|
|
Numbers of the form 2^i or 3^j.
(Formerly M0588)
|
|
30
|
|
|
1, 2, 3, 4, 8, 9, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 19683, 32768, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 2097152, 4194304, 4782969, 8388608, 14348907, 16777216, 33554432
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
In the 14th century, Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1, 2), (2, 3), (3, 4), and (8, 9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014
Numbers n such that absolute value of the greatest prime factor of n minus the smallest prime not dividing n is 1 (that is, abs(A006530(n)-A053669(n)) = 1). - Anthony Browne, Jun 26 2016
1 and numbers k such that k = phi(k) + phi(2*k)/2. - Paolo P. Lava, Oct 26 2017
|
|
REFERENCES
|
G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 78.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
A:={seq(2^n, n=0..63)}: B:={seq(3^n, n=0..40)}: C:=sort(convert(A union B, list)): seq(C[j], j=1..39); # Emeric Deutsch, Aug 03 2005
|
|
MATHEMATICA
|
seqMax = 10^20; Union[2^Range[0, Floor[Log[2, seqMax]]], 3^Range[0, Floor[Log[3, seqMax]]]] (* Stefan Steinerberger, Apr 08 2006 *)
|
|
PROG
|
(Haskell)
a006899 n = a006899_list !! (n-1)
a006899_list = 1 : m (tail a000079_list) (tail a000244_list) where
m us'@(u:us) vs'@(v:vs) = if u < v then u : m us vs' else v : m us' vs
(PARI) upto(n) = my(res = vector(logint(n, 2) + logint(n, 3) + 1), t = 1); res[1] = 1; for(i = 2, 3, for(j = 1, logint(n, i), t++; res[t] = i^j)); vecsort(res) \\ David A. Corneth, Oct 26 2017
(PARI) a(n) = my(i0= logint(3^(n-1), 6), i= logint(3^n, 6)); if(i > i0, 2^i, my(j=logint(2^n, 6)); 3^j) \\ Ruud H.G. van Tol, Nov 10 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|