login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006895
Parenthesized one way gives the powers of 2: (1), (2), (1+3), ..., another way the powers of 3: (1), (2+1), (3+6), ....
(Formerly M0158)
3
1, 2, 1, 3, 6, 2, 16, 9, 23, 58, 6, 128, 109, 147, 512, 70, 954, 1233, 815, 4096, 1650, 6542, 13141, 3243, 32768, 23038, 42498, 131072, 3577, 258567, 272874, 251414, 1048576, 294333, 1802819, 2980150, 1214154, 8388608, 4746145, 12031071, 31015650, 2538782
OFFSET
0,2
COMMENTS
Powers of 2 need 1 term or 2 terms parenthesized, whereas powers of 3 need 2 or 3 terms parenthesized, when 3 then the middle term is a power of 2. See A227928. - Reinhard Zumkeller, Oct 09 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
EXAMPLE
. a(0) = _^0
. a(1) = 2^1
. a(1) + a(2) = 2 + 1 = 3^1
. a(2) + a(3) = 1 + 3 = 4 = 2^2
. a(3) + a(4) = 3 + 6 = 9 = 3^2
. a(4) + a(5) = 6 + 2 = 8 = 2^3
. a(6) = 16 = 2^4
. a(5) + a(6) + a(7) = 2 + 16 + 9 = 27 = 3^3
. a(7) + a(8) = 9 + 23 = 32 = 2^5
. a(8) + a(9) = 23 + 58 = 81 = 3^4
. a(9) + a(10) = 58 + 6 = 64 = 2^6
. a(11) = 128 = 2^7
. a(10) + a(11) + a(12) = 6 + 128 + 109 = 243 = 3^5
. a(12) + a(13) = 109 + 147 = 256 = 2^8
. a(14) = 512 = 2^9
. a(13) + a(14) + a(15) = 147 + 512 + 70 = 3^6 = 729 .
PROG
(Haskell)
a006895 n = a006895_list !! n
a006895_list = 1 : f 0 0 (tail a000079_list) (tail a000244_list) where
f x y us'@(u:us) vs'@(v:vs)
| x > 0 = (u - x) : f 0 (u - x + y) us vs'
| y > v - u = (v - y) : f (v + x - y) 0 us' vs
| otherwise = u : f 0 (u + y) us vs'
-- Reinhard Zumkeller, Oct 09 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, K. S. Brown [ kevin2003(AT)delphi.com ]
STATUS
approved