login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125205
Irregular triangle read by rows T(n,k) (n>=1, 0<=k<=n(n-1)/2) giving the total number of connected components in all subgraphs (V,E') with |E'|=k of the complete labeled graph K_n=(V,E).
5
1, 2, 1, 3, 6, 3, 1, 4, 18, 30, 24, 15, 6, 1, 5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1, 6, 75, 420, 1385, 3015, 4800, 6365, 7170, 6705, 5065, 3009, 1365, 455, 105, 15, 1, 7, 126, 1050, 5355, 18690, 47880, 96796, 166890, 251370, 329945, 373947, 362292, 297115
OFFSET
1,2
FORMULA
G.f.: Sum_{n,k} T(n,k)*x^n/n!*y^k=(F(x,y)-1)*exp(F(x,y)-1)=G(x,y)*log(G(x,y)) where G(x,y)=Sum_{n=0..oo} (1+y)^(n(n-1)/2)*x^n/n! and F(x,y)=1+log(G(x,y)) is g.f. of A062734.
EXAMPLE
Triangle begins:
1;
2, 1;
3, 6, 3, 1;
4, 18, 30, 24, 15, 6, 1;
5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1;
...
T(3,1) = 6 since there are three different subgraphs of K_3 with one edge and each subgraph has two connected components.
PROG
(PARI) { G=sum(n=0, 6, (1+y)^(n*(n-1)/2)*x^n/n!); K=G*log(G); for(n=1, 6, print(Vecrev(n!*polcoeff(K, n, x)))) }
CROSSREFS
Cf. A062734.
Cf. A125206 (row-reversed version), A125207 (row sums).
Sequence in context: A006895 A202204 A289815 * A125206 A221918 A193897
KEYWORD
nonn,tabf
AUTHOR
Max Alekseyev, Nov 23 2006
STATUS
approved