|
|
A125204
|
|
a(0)=0, a(1)=1; and a(n) = a(n-1) + a(a(n-1) mod n) for n>=2.
|
|
3
|
|
|
0, 1, 2, 4, 4, 8, 10, 14, 24, 34, 38, 46, 84, 94, 132, 216, 240, 242, 266, 266, 276, 280, 520, 652, 656, 666, 906, 1122, 1124, 1644, 2300, 2310, 2320, 2358, 2442, 3564, 3564, 3648, 3648, 3928, 3952, 4192, 6634, 6718, 9018, 9284, 12932, 12946, 15388, 15390
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 0..5000
|
|
EXAMPLE
|
a(14) = a(13) + a(a(13) mod 14) = 94 + a(94 mod 14) = 94 + a(10) = 94 + 38 = 132.
|
|
MAPLE
|
f:=proc(n) option remember;
if n <= 1 then n else f(n-1)+f(f(n-1) mod n); fi; end;
[seq(f(n), n=0..32)]; # N. J. A. Sloane, May 04 2016
|
|
MATHEMATICA
|
f[l_List] := Append[l, l[[ -1]] + l[[Mod[l[[ -1]], Length[l]] + 1]]]; Nest[f, {0, 1}, 50] (* Ray Chandler, Jan 23 2007 *)
l = {0, 1}; Do[x = l[[n]] + l[[Mod[l[[n]], n] + 1]]; AppendTo[l, x], {n, 2, 50}]; l (* Ryan Propper, Jan 24 2007 *)
|
|
PROG
|
(Python)
from sympy.core.cache import cacheit
@cacheit
def a(n): return n if n<2 else a(n - 1) + a(a(n - 1)%n)
print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 07 2017
|
|
CROSSREFS
|
Sequence in context: A073117 A342695 A039879 * A241386 A265204 A073420
Adjacent sequences: A125201 A125202 A125203 * A125205 A125206 A125207
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Leroy Quet, Jan 13 2007
|
|
EXTENSIONS
|
Extended by Ray Chandler and Robert G. Wilson v, Jan 23 2007
More terms from Ryan Propper, Jan 24 2007
|
|
STATUS
|
approved
|
|
|
|