The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241386 Number of partitions p of n such that the number of parts is a part or max(p) - min(p) is a part. 5
 0, 1, 0, 1, 2, 4, 4, 8, 10, 15, 19, 24, 35, 45, 57, 76, 98, 123, 161, 198, 252, 313, 388, 472, 597, 722, 891, 1085, 1332, 1602, 1964, 2348, 2852, 3412, 4109, 4889, 5879, 6964, 8317, 9846, 11706, 13795, 16358, 19226, 22695, 26630, 31305, 36621, 42966, 50116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA a(n) + A241385(n) = A000041(n) for n >= 0. EXAMPLE a(6) counts these 4 partitions: 42, 321, 2211, 21111. MATHEMATICA z = 40; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241382 *) Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241383 *) Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241384 *) Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241385 *) Table[Count[f[n], p_ /; MemberQ[p, Length[p]] || MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241386 *) CROSSREFS Cf. A241382, A241383, A241384, A241385. Sequence in context: A342695 A039879 A125204 * A265204 A073420 A034408 Adjacent sequences: A241383 A241384 A241385 * A241387 A241388 A241389 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 04:28 EDT 2023. Contains 361454 sequences. (Running on oeis4.)