login
A241383
Number of partitions p of n such that the number of parts is not a part and max(p) - min(p) is a part.
5
0, 0, 0, 0, 1, 2, 2, 4, 6, 8, 11, 12, 21, 24, 33, 42, 57, 68, 95, 110, 147, 176, 223, 262, 344, 402, 508, 607, 758, 894, 1117, 1309, 1614, 1905, 2315, 2722, 3306, 3870, 4657, 5468, 6536, 7642, 9113, 10635, 12608, 14716, 17346, 20197, 23770, 27597, 32334
OFFSET
0,6
FORMULA
a(n) + A241382(n) + A241384(n) = A241386(n) for n >= 0.
EXAMPLE
a(9) counts these 8 partitions: 63, 3321, 32211, 321111, 22221, 222111, 221111, 2111111.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241382 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241383 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241384 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241385 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] || MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241386 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 21 2014
STATUS
approved