OFFSET
0,6
EXAMPLE
a(9) counts these 8 partitions: 63, 3321, 32211, 321111, 22221, 222111, 221111, 2111111.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241382 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241383 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241384 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241385 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] || MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241386 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 21 2014
STATUS
approved