login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258125
a(1) = a(2) = 2; a(n) = a(n-1) + gpf(a(n-2)), where gpf is greatest prime factor.
1
2, 2, 4, 6, 8, 11, 13, 24, 37, 40, 77, 82, 93, 134, 165, 232, 243, 272, 275, 292, 303, 376, 477, 524, 577, 708, 1285, 1344, 1601, 1608, 3209, 3276, 6485, 6498, 7795, 7814, 9373, 13280, 13383, 13466, 14953, 21686, 22473, 24022, 24249, 36260
OFFSET
1,1
LINKS
MATHEMATICA
a[1] = a[2] = 2; a[n_] := a[n] = a[n - 1] + FactorInteger[a[n - 2]][[-1, 1]]; Table[a@ n, {n, 46}] (* Michael De Vlieger, Nov 16 2015 *)
nxt[{a_, b_}]:={b, b+FactorInteger[a][[-1, 1]]}; Transpose[NestList[nxt, {2, 2}, 50]][[1]] (* Harvey P. Dale, Nov 22 2015 *)
PROG
(PARI) gpf(n)=my(f=factor(n)[, 1]); f[#f];
first(m)=my(v=vector(m)); v[1]=2; v[2]=2; for(i=3, m, v[i]=v[i-1]+gpf(v[i-2])); v
(Haskell)
a258125 n = a258125_list !! (n-1)
a258125_list = 2 : 2 : zipWith (+)
(map a006530 a258125_list) (tail a258125_list)
-- Reinhard Zumkeller, Nov 17 2015
CROSSREFS
Cf. A006530 (gpf), A078695 (same recurrence).
Sequence in context: A179999 A286736 A241383 * A361394 A147982 A329899
KEYWORD
nonn
AUTHOR
Anders Hellström, Nov 16 2015
STATUS
approved