login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258128
Octagonal numbers (A000567) that are the sum of two consecutive octagonal numbers.
5
5461, 813281, 7272157205, 1083057360705, 9684433559760981, 1442322650052752161, 12896895753596262561301, 1920761265591267733640321, 17174976631595008767000306005, 2557904668044167195987033355105, 22872156829955018609383449248248341
OFFSET
1,1
FORMULA
G.f.: -x*(x^4+20*x^3-1146230*x^2+807820*x+5461) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).
EXAMPLE
5461 is in the sequence because Oct(43) = 5461 = 2640 + 2821 = Oct(30) + Oct(31).
MATHEMATICA
CoefficientList[Series[-x*(x^4 +20*x^3 -1146230*x^2 +807820*x +5461)/((x-1)*(x^2 -1154*x +1)*(x^2 +1154*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
LinearRecurrence[{1, 1331714, -1331714, -1, 1}, {5461, 813281, 7272157205, 1083057360705, 9684433559760981}, 20] (* Harvey P. Dale, Feb 19 2018 *)
PROG
(PARI) Vec(-x*(x^4 +20*x^3 -1146230*x^2 +807820*x +5461)/((x-1)*(x^2 -1154*x +1)*(x^2 +1154*x +1)) + O('x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 21 2015
STATUS
approved