login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258129
Octagonal numbers (A000567) that are the sum of three consecutive octagonal numbers.
5
698901, 5102520783381, 37252493940331837461, 271973082264557457061125141, 1985621622943208359132836202790421, 14496630316026749501691464257547633057301, 105837027604506739193825102426073141683789429781, 772695182809023513889440668692977953487035688873891861
OFFSET
1,1
FORMULA
G.f.: -21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)).
EXAMPLE
698901 is in the sequence because Oct(483) = 698901 = 231296 + 232965 + 234640 = Oct(278) + Oct(279) + Oct(280).
MATHEMATICA
CoefficientList[Series[-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *)
LinearRecurrence[{7300803, -7300803, 1}, {698901, 5102520783381, 37252493940331837461}, 20] (* Harvey P. Dale, Sep 16 2018 *)
PROG
(PARI) Vec(-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)) + O('x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 21 2015
STATUS
approved