login
A332850
Numbers k = a^2 + b^2 such that reversal(k) = a^2 - b^2 for a > b > 0, where reversal is A004086.
0
699796, 4854634, 6752626, 84036010, 931910661, 21584860960, 52554850525, 467170024564, 637843128736, 638730439636, 638734039636, 638943127636, 727830438745, 727834038745, 746710459825, 746754019825, 748943127625, 9894192267061
OFFSET
1,1
COMMENTS
When b=0, the palindromic numbers m = a^2 + b^2 such that reversal(m) = a^2 - b^2, are A002779 (palindromic squares).
a(19) > 3*10^14, if it exists. - Giovanni Resta, Feb 27 2020
EXAMPLE
699796 = 836^2 + 30^2 and 697996 = 836^2 - 30^2.
MATHEMATICA
Do[If[IntegerReverse[a^2+b^2]==a^2-b^2, Print[{a^2+b^2, a, b}]], {a, 1, 50000}, {b, 1, a-1}]
PROG
(PARI) isok(k) = {my(r = fromdigits(Vecrev(digits(k))), s = r+k, d = r-k); if (d && !(s % 2) && issquare(s/2) && !(d % 2) && issquare(d/2), 1, 0); } \\ Michel Marcus, Feb 27 2020
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Metin Sariyar, Feb 26 2020
EXTENSIONS
a(6)-a(18) from Giovanni Resta, Feb 27 2020
STATUS
approved