login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332850
Numbers k = a^2 + b^2 such that reversal(k) = a^2 - b^2 for a > b > 0, where reversal is A004086.
0
699796, 4854634, 6752626, 84036010, 931910661, 21584860960, 52554850525, 467170024564, 637843128736, 638730439636, 638734039636, 638943127636, 727830438745, 727834038745, 746710459825, 746754019825, 748943127625, 9894192267061
OFFSET
1,1
COMMENTS
When b=0, the palindromic numbers m = a^2 + b^2 such that reversal(m) = a^2 - b^2, are A002779 (palindromic squares).
a(19) > 3*10^14, if it exists. - Giovanni Resta, Feb 27 2020
EXAMPLE
699796 = 836^2 + 30^2 and 697996 = 836^2 - 30^2.
MATHEMATICA
Do[If[IntegerReverse[a^2+b^2]==a^2-b^2, Print[{a^2+b^2, a, b}]], {a, 1, 50000}, {b, 1, a-1}]
PROG
(PARI) isok(k) = {my(r = fromdigits(Vecrev(digits(k))), s = r+k, d = r-k); if (d && !(s % 2) && issquare(s/2) && !(d % 2) && issquare(d/2), 1, 0); } \\ Michel Marcus, Feb 27 2020
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Metin Sariyar, Feb 26 2020
EXTENSIONS
a(6)-a(18) from Giovanni Resta, Feb 27 2020
STATUS
approved