|
|
A332848
|
|
Primes p such that (3*p+q)/2, (p+3*q)/2, (3*q+r)/2 and (q+3*r)/2 are all prime, where q and r are the next primes after p.
|
|
1
|
|
|
809, 15331, 51071, 59183, 59447, 95747, 125737, 224069, 442733, 471677, 521869, 579757, 651517, 658873, 659453, 696989, 890887, 893449, 1035707, 1114193, 1236517, 1271807, 1299041, 1337593, 1435201, 1585513, 1590383, 1672271, 1707073, 1708363, 1817131, 1835003, 1963309, 1992527, 2078371, 2329597
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first of two consecutive primes that are both in A329151.
The first case where a(n+1) is the next prime after a(n), i.e. a(n) and the next two primes are all in A329151, is a(176)=35103361.
|
|
LINKS
|
|
|
EXAMPLE
|
a(3) = 51071 is in the sequence because p=51071, q=51109, r=51131 are consecutive primes such that (3*p+q)/2=102161, (p+3*q)/2=102199, (3*q+r)/2=102229, (q+3*r)/2=102251 are all prime.
|
|
MAPLE
|
q:= 3: r:= 5:
count:= 0: Res:= NULL:
while count < 100 do
p:= q; q:= r; r:= nextprime(q);
if isprime((3*p+q)/2) and isprime((p+3*q)/2) and isprime((3*q+r)/2)
and isprime((q+3*r)/2) then
count:= count+1; Res:= Res, p;
fi
od:
Res;
|
|
MATHEMATICA
|
Select[Partition[Prime[Range[175000]], 3, 1], AllTrue[{(3#[[1]]+#[[2]])/2, (#[[1]]+ 3#[[2]])/2, (3#[[2]]+#[[3]])/2, (#[[2]]+3#[[3]])/2}, PrimeQ]&][[;; , 1]] (* Harvey P. Dale, Mar 19 2023 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|