login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332846 a(1) = 1; a(n+1) = Sum_{k=1..n} a(k) * ceiling(n/k). 1
1, 1, 3, 8, 20, 50, 121, 297, 716, 1739, 4198, 10157, 24513, 59246, 143006, 345381, 833792, 2013272, 4860337, 11734717, 28329772, 68396030, 165121957, 398644144, 962410246, 2323475153, 5609360573, 13542220814, 32693802921, 78929886033, 190553574988, 460037180829, 1110627936647 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..33.

FORMULA

G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * (A(x) + x * Sum_{k>=1} A(x^k))).

a(1) = 1; a(n) = a(n-1) + Sum_{k=1..n-2} (a(k) + Sum_{d|k} a(d)).

a(n) ~ c * (1 + sqrt(2))^n, where c = 0.2594006517235012546870541901936538347053403598092060748627156661727... - Vaclav Kotesovec, Mar 10 2020

MATHEMATICA

a[1] = 1; a[n_] := a[n] = Sum[a[k] Ceiling[(n - 1)/k], {k, 1, n - 1}]; Table[a[n], {n, 1, 33}]

a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[k] + Sum[a[d], {d, Divisors[k]}], {k, 1, n - 2}]; Table[a[n], {n, 1, 33}]

terms = 33; A[_] = 0; Do[A[x_] = x (1 + (1/(1 - x)) (A[x] + x Sum[A[x^k], {k, 1, terms}])) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest

CROSSREFS

Cf. A006590, A014668, A097919, A332490.

Sequence in context: A261233 A027219 A085831 * A178167 A078053 A122595

Adjacent sequences:  A332843 A332844 A332845 * A332847 A332848 A332849

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Feb 26 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:46 EDT 2021. Contains 345419 sequences. (Running on oeis4.)