login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006590
a(n) = Sum_{k=1..n} ceiling(n/k).
(Formerly M2522)
25
1, 3, 6, 9, 13, 16, 21, 24, 29, 33, 38, 41, 48, 51, 56, 61, 67, 70, 77, 80, 87, 92, 97, 100, 109, 113, 118, 123, 130, 133, 142, 145, 152, 157, 162, 167, 177, 180, 185, 190, 199, 202, 211, 214, 221, 228, 233, 236, 247, 251, 258, 263, 270, 273, 282, 287, 296, 301
OFFSET
1,2
COMMENTS
The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003
Given the fact that ceiling(x) <= x+1, we can, using well known results for the harmonic series, easily derive that n*log(n) <= a(n) <= n*(1+log(n)) + n = n(log(n)+2). - Stefan Steinerberger, Apr 08 2006
REFERENCES
Marc LeBrun, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = n+Sum_{k=1..n-1} tau(k). - Vladeta Jovovic, Oct 17 2002
a(n) = 1 + a(n-1) + tau(n-1), a(n) = A006218(n-1) + n. - T. D. Noe, Jan 05 2007
a(n) = a(n-1) + A000005(n) + 1 for n >= 2. a(n) = A161886(n) - A000005(n) + 1 = A161886(n-1) + 2 = A006218(n) + A049820(n) for n >= 1. - Jaroslav Krizek, Nov 14 2009
MAPLE
seq(add(ceil(n/j), j = 1..n), n = 1..60); # G. C. Greubel, Nov 07 2019
MATHEMATICA
Table[Sum[Ceiling[n/i], {i, 1, n}], {n, 1, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
nxt[{n_, a_}]:={n+1, a+DivisorSigma[0, n]+1}; Transpose[NestList[nxt, {1, 1}, 60]][[2]] (* Harvey P. Dale, Aug 23 2013 *)
PROG
(Haskell)
a006590 n = sum $ map f [1..n] where
f x = y + 1 - 0 ^ r where (y, r) = divMod n x
-- Reinhard Zumkeller, Feb 18 2013
(PARI) first(n)=my(v=vector(n, i, i), s); for(i=1, n-1, v[i+1]+=s+=numdiv(i)); v \\ Charles R Greathouse IV, Feb 07 2017
(PARI) a(n) = n + sum(k=1, n-1, (n-1)\k); \\ Michel Marcus, Oct 10 2021
(Magma) [&+[Ceiling(n/j): j in [1..n]] : n in [1..60]]; // G. C. Greubel, Nov 07 2019
(Sage) [sum(ceil(n/j) for j in (1..n)) for n in (1..60)] # G. C. Greubel, Nov 07 2019
(Python)
from math import isqrt
def A006590(n): return (lambda m: n+2*sum((n-1)//k for k in range(1, m+1))-m*m)(isqrt(n-1)) # Chai Wah Wu, Oct 09 2021
CROSSREFS
Sequence in context: A060605 A325228 A278449 * A061781 A123753 A124288
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved