OFFSET
1,2
COMMENTS
Partial sums of A049108. - Joerg Arndt, Jan 06 2015
LINKS
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
Harold Shapiro, An arithmetic function arising from the phi function, Amer. Math. Monthly, Vol. 50, No. 1 (1943), 18-30.
FORMULA
a(n) = sum( j=1..n, A049108(j) ).
EXAMPLE
Iteration sequences of Phi applied to 1, 2, 3, 4, 5, 6 give lengths 1, 2, 3, 3, 4, 3 with partial sums as follows:1, 3, 5, 9, 13, 16 resulting in first...6th terms here.
MATHEMATICA
Accumulate[Table[Length[NestWhileList[EulerPhi, n, #!=1&]], {n, 60}]] (* Harvey P. Dale, Mar 23 2024 *)
PROG
(PARI) a049108(n)=my(t=1); while(n>1, t++; n=eulerphi(n)); t;
vector(80, n, sum(j=1, n, a049108(j))) \\ Michel Marcus, Jan 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 13 2001
STATUS
approved