login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003434
Number of iterations of phi(x) at n needed to reach 1.
(Formerly M0244)
54
0, 1, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 4, 6, 5, 5, 5, 6, 5, 6, 5, 5, 6, 6, 5, 6, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 5, 6, 7, 5, 7, 5, 6, 6, 7, 5, 6, 6, 6, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 6, 6
OFFSET
1,3
COMMENTS
Each number n>1 occurs for the first time at the position A007755(n+1) and for the last time at 2*3^(n-1). - Ivan Neretin, Mar 24 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. V. Subbarao, On a function connected with phi(n), J. Madras Univ. B. 27 (1957), pp. 327-333.
LINKS
Hartosh Singh Bal, Gaurav Bhatnagar, Prime number conjectures from the Shapiro class structure, arXiv:1903.09619 [math.NT], 2019.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
I. Niven, The iteration of certain arithmetic functions, Canad. J. Math. 2 (1950), pp. 406-408.
H. N. Shapiro, On the iterates of a certain class of arithmetic functions, Comm. Pure Appl. Math. 3 (1950), pp. 259-272.
S. Sivasankaranarayana Pillai, On a function connected with phi(n), Bull. Amer. Math. Soc., 35:6 (1929), pp. 837-841.
S. Sivasankaranarayana Pillai, On a function connected with phi(n), Bull. Amer. Math. Soc., 35.6 (1929), 837-841. (Annotated scanned copy)
FORMULA
a(n) = A049108(n) - 1.
By the definition of a(n) we have for n >= 2 the recursion a(n) = a(phi(n)) + 1. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
Pillai proved that log(n/2)/log(3) + 1 <= a(n) <= log(n)/log(2) + 1. - Charles R Greathouse IV, Mar 22 2012
EXAMPLE
If n=164 the trajectory is {164,80,32,16,8,4,2,1}. Its length is 8, thus a(164)=7.
MAPLE
A003434 := proc(n)
local a, e;
e := n ;
a :=0 ;
while e > 1 do
a := a+1 ;
e := numtheory[phi](e) ;
end do:
a;
end proc:
seq(A003434(n), n=1..40) ; # R. J. Mathar, Jan 09 2017
MATHEMATICA
f[n_] := Length@ NestWhileList[ EulerPhi, n, # != 1 &] - 1; Array[f, 105] (* Robert G. Wilson v, Feb 07 2012 *)
PROG
(PARI) A003434(n)=for(k=0, n, n>1 || return(k); n=eulerphi(n)) /* Works because the loop limits are evaluated only once. Using while(...) takes 50% more time. */ \\ M. F. Hasler, Jul 01 2009
(Haskell)
a003434 n = fst $ until ((== 1) . snd)
(\(i, x) -> (i + 1, a000010 x)) (0, n)
-- Reinhard Zumkeller, Feb 08 2013, Jul 03 2011
(Python)
from sympy import totient
def A003434(n):
c, m = 0, n
while m > 1:
c += 1
m = totient(m)
return c # Chai Wah Wu, Nov 14 2021
CROSSREFS
Sequence in context: A376181 A322418 A019569 * A330808 A097849 A100678
KEYWORD
nonn,easy,nice,look
STATUS
approved