login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006588 a(n) = 4^n*(3*n)!/((2*n)!*n!). 4
1, 12, 240, 5376, 126720, 3075072, 76038144, 1905131520, 48199827456, 1228623052800, 31504481648640, 811751838842880, 20999667135283200, 545086744471535616, 14189559697354260480, 370298578584748425216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 35.

The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Eq. 3.115, page 35.

LINKS

Table of n, a(n) for n=0..15.

M. Le Brun, Email to N. J. A. Sloane, Jul 1991

FORMULA

a(n) = sum_{k=0..n} binomial(4*n+1, 2*n-2*k)*binomial(n+k, k) = 4^n*binomial(3*n, n).

a(n) ~ 1/2*3^(1/2)*Pi^(-1/2)*n^(-1/2)*3^(3*n)*{1 - 7/72*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002

a(n) = A013609(3*n, 2*n). - Johannes W. Meijer, Aug 22 2013

MAPLE

A006588 := n->add( binomial(4*n+1, 2*n-2*k)*binomial(n+k, k), k=0..n): seq(A006588(n), n=0..15);

MATHEMATICA

Table[4^n*(3*n)!/((2*n)!*n!), {n, 0, 20}] (* Erich Friedman, Mar 22 2008 *)

PROG

(PARI) a(n) = 4^n*(3*n)!/((2*n)!*n!) \\ \\ P L Patodia (pannalal(AT)usa.net), Feb 24 2007

(PARI) a(n) = sum(k=0, n, binomial(4*n+1, 2*n-2*k)*binomial(n+k, k)) \\ P L Patodia (pannalal(AT)usa.net), Feb 24 2007

CROSSREFS

Sequence in context: A012303 A119837 A012538 * A009150 A009080 A002166

Adjacent sequences:  A006585 A006586 A006587 * A006589 A006590 A006591

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 17:23 EST 2018. Contains 299584 sequences. (Running on oeis4.)