OFFSET
1,4
COMMENTS
All denominators in the expansion 1 = 1/x_1 + ... + 1/x_n are bounded by A000058(n-1), i.e., 0 < x_1 < ... < x_n < A000058(n-1). Furthermore, for a fixed n, x_i <= (n+1-i)*(A000058(i-1)-1). - Max Alekseyev, Oct 11 2012
If on the other hand, x_k need not be unique, see A002966. - Robert G. Wilson v, Jul 17 2013
REFERENCES
Marc LeBrun, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Le Brun, Email to N. J. A. Sloane, Jul 1991
S. V. Konyagin, Double exponential lower bound for the number of representations of unity by Egyptian fractions. Mathematical Notes, 95:1-2 (2014), 277-281.
T. D. Browning and C. Elsholtz, The number of representations of rationals as a sum of unit fractions, Illinois J. Math. 55:2 (2011), 685-696.
Joel Louwsma, On solutions of Sum_{i=1..n} 1/x_i = 1 in integers of the form 2^a*k^b, where k is a fixed odd positive integer, arXiv:2402.09515 [math.NT], 2024.
FORMULA
a(n) = A280520(n,1).
EXAMPLE
The 6 solutions for n=4 are 2,3,7,42; 2,3,8,24; 2,3,9,18; 2,3,10,15; 2,4,5,20; 2,4,6,12.
CROSSREFS
KEYWORD
nonn,nice,hard,more
AUTHOR
EXTENSIONS
a(1)-a(7) are confirmed by Jud McCranie, Dec 11 1999
a(8) from John Dethridge (jcd(AT)ms.unimelb.edu.au), Jan 08 2004
STATUS
approved