login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006583
a(n) = Sum_{k=1..n-1} (k OR n-k).
(Formerly M4069)
4
1, 6, 8, 16, 25, 42, 44, 56, 69, 94, 108, 136, 165, 210, 208, 224, 241, 278, 296, 336, 377, 442, 460, 504, 549, 622, 668, 744, 821, 930, 912, 928, 945, 998, 1016, 1072, 1129, 1226, 1244, 1304
OFFSET
2,2
REFERENCES
Marc LeBrun, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 39.
FORMULA
G.f.: 1/(1-x)^2 * sum(k>=0, 2^k*t^2(4t^2+6t+1)/(1+t)^2, t=x^2^k). - Ralf Stephan, Feb 12 2003
a(0)=a(1)=0, a(2n) = 2a(n)+2a(n-1)+5n-4, a(2n+1) = 4a(n)+6n. - Ralf Stephan, Oct 09 2003
a(n) = 2*(Sum_{k=1..floor((n-1)/2)} k OR n-k) + m where m is 0 if n is odd and n/2 otherwise. - Chai Wah Wu, May 07 2023
MATHEMATICA
Table[Sum[BitOr[k, n-k], {k, n-1}], {n, 2, 50}] (* Harvey P. Dale, Dec 05 2020 *)
PROG
(PARI) a(n)=sum(k=1, n-1, bitor(k, n-k)) \\ Charles R Greathouse IV, Aug 11 2017
(Python)
def A006583(n): return (sum(k|n-k for k in range(1, n+1>>1))<<1)+(0 if n&1 else n>>1) # Chai Wah Wu, May 07 2023
CROSSREFS
Antidiagonal sums of array A003986.
Sequence in context: A315940 A048228 A067543 * A011989 A270821 A139452
KEYWORD
nonn,base
STATUS
approved