OFFSET
1,3
COMMENTS
Equals eigensequence of triangle A010766 and starting (1, 3, 7, 16, 33, ...) = row sums of triangle A163313. - Gary W. Adamson, Jul 30 2009. Gary Adamson's comment may be restated as "This sequence shifts left by one place under the floor transform." - N. J. A. Sloane, Feb 05 2016
The Gould & Quaintance reference, published in 2007, says incorrectly that this sequence is not in the OEIS. - Olivier Gérard, Oct 20 2011
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
H. W. Gould and J. Quaintance, Floor and Roof function analog of the Bell Numbers, INTEGERS, 7 (2007), #A58.
FORMULA
a(n) is asymptotic to c*2^n where c = 0.59960731361450033896934...
a(n+1) = Sum_{k=1..n} a(k)*floor(n/k). - Franklin T. Adams-Watters, Mar 21 2017
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020
MAPLE
with(numtheory):
a:= proc(n) option remember;
`if`(n=1, 1, add(add(a(d), d=divisors(k)), k=1..n-1))
end:
seq(a(n), n=1..40); # Alois P. Heinz, Oct 28 2011
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[Sum[a[d], {d, Divisors[k]}], {k, 1, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 07 2015 *)
PROG
(PARI) // an=vector(100); a(n)=if(n<0, 0, an[n]); // an[1]=1; for(n=2, 100, an[n]=sum(k=1, n-1, sumdiv(k, d, a(d))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jun 24 2003
STATUS
approved