login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014668
a(1) = 1, a(n) = Sum_{k=1..n-1} Sum_{d|k} a(d).
10
1, 1, 3, 7, 16, 33, 71, 143, 295, 594, 1206, 2413, 4871, 9743, 19559, 39138, 78428, 156857, 314047, 628095, 1256809, 2513693, 5028594, 10057189, 20116979, 40233975, 80472823, 160945945, 321901713, 643803427, 1287627061, 2575254123, 5150547536, 10301096282
OFFSET
1,3
COMMENTS
Equals eigensequence of triangle A010766 and starting (1, 3, 7, 16, 33, ...) = row sums of triangle A163313. - Gary W. Adamson, Jul 30 2009. Gary Adamson's comment may be restated as "This sequence shifts left by one place under the floor transform." - N. J. A. Sloane, Feb 05 2016
The Gould & Quaintance reference, published in 2007, says incorrectly that this sequence is not in the OEIS. - Olivier Gérard, Oct 20 2011
LINKS
H. W. Gould and J. Quaintance, Floor and Roof function analog of the Bell Numbers, INTEGERS, 7 (2007), #A58.
FORMULA
a(n) is asymptotic to c*2^n where c = 0.59960731361450033896934...
a(n+1) = Sum_{k=1..n} a(k)*floor(n/k). - Franklin T. Adams-Watters, Mar 21 2017
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020
MAPLE
with(numtheory):
a:= proc(n) option remember;
`if`(n=1, 1, add(add(a(d), d=divisors(k)), k=1..n-1))
end:
seq(a(n), n=1..40); # Alois P. Heinz, Oct 28 2011
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[Sum[a[d], {d, Divisors[k]}], {k, 1, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 07 2015 *)
PROG
(PARI) // an=vector(100); a(n)=if(n<0, 0, an[n]); // an[1]=1; for(n=2, 100, an[n]=sum(k=1, n-1, sumdiv(k, d, a(d))))
CROSSREFS
Cf. A010766, A163313. - Gary W. Adamson, Jul 30 2009
Sequence in context: A277968 A217942 A002936 * A354909 A182615 A181893
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jun 24 2003
STATUS
approved