login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182615
Greatest k such that floor(k/r^n)=n, where r = golden mean = (1+sqrt(5))/2.
1
3, 7, 16, 34, 66, 125, 232, 422, 760, 1352, 2388, 4185, 7294, 12644, 21824, 37518, 64278, 109781, 186980, 317666, 538472, 910868, 1537896, 2592049, 4361786, 7328960, 12297712, 20608762, 34495530, 57675437, 96331168, 160737950, 267960664, 446321504, 742796604, 1235255433
OFFSET
1,1
FORMULA
For n>=3, a(n)=-1+A182614(n)+A000032(n), where A000032 is the sequence of Lucas numbers.
Conjectures from Chai Wah Wu, Jan 12 2023: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) for n > 8.
G.f.: x*(-x^7 - x^6 + 3*x^5 + 4*x^2 - x - 3)/((x - 1)*(x + 1)*(x^2 + x - 1)^2). (End)
EXAMPLE
The integers k satisfying floor(k/r^3)=3 are 13,14,15,16, so that a(3)=16.
PROG
(PARI) a(n) = floor(((1+sqrt(5))/2)^n*(n+1)) \\ David A. Corneth, May 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 22 2010
EXTENSIONS
a(23) corrected by Andrey Zabolotskiy, May 07 2022
More terms from David A. Corneth, May 07 2022
STATUS
approved