OFFSET
0,3
COMMENTS
Bisection (even part) of A086543.
EXAMPLE
For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From Gus Wiseman, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
(2) (4) (6) (8)
(31) (42) (53)
(1111) (51) (62)
(222) (71)
(411) (332)
(2211) (521)
(21111) (611)
(111111) (2222)
(3221)
(3311)
(5111)
(22211)
(32111)
(221111)
(311111)
(2111111)
(11111111)
(End)
MAPLE
with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
MATHEMATICA
Table[Length[Select[IntegerPartitions[2n], n>0&&FreeQ[#, n]&]], {n, 0, 15}] (* Gus Wiseman, Oct 11 2023 *)
Table[Length[Select[IntegerPartitions[2n], Or@@OddQ/@#&]], {n, 0, 15}] (* Gus Wiseman, Oct 11 2023 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 03 2010
EXTENSIONS
Edited by Alois P. Heinz, Dec 03 2010
STATUS
approved