|
|
A182616
|
|
Number of partitions of 2n that contain odd parts.
|
|
7
|
|
|
0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Bisection (even part) of A086543.
|
|
LINKS
|
Table of n, a(n) for n=0..38.
|
|
FORMULA
|
a(n) = A000041(2*n) - A000041(n).
|
|
EXAMPLE
|
For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
|
|
MAPLE
|
with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
|
|
CROSSREFS
|
Cf. A000041, A086543, A304710.
Sequence in context: A182734 A327608 A239844 * A159217 A052996 A112523
Adjacent sequences: A182613 A182614 A182615 * A182617 A182618 A182619
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Omar E. Pol, Dec 03 2010
|
|
EXTENSIONS
|
Edited by Alois P. Heinz, Dec 03 2010
|
|
STATUS
|
approved
|
|
|
|