OFFSET
0,6
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..80 from Reinhard Zumkeller)
FORMULA
a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m<i<j<n & i+j=2*n).
Coefficient of x^(2*n) in Product_{k=1..n} (1+x^k). - Vladeta Jovovic, Aug 07 2003
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 22 2015
EXAMPLE
a(4)=1 [1+3+4=2*4]; a(5)=3 [1+2+3+4=1+4+5=2+3+5=2*5].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) + `if`(i>n, 0, b(n-i, i-1))))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..80); # Alois P. Heinz, Jan 18 2013
MATHEMATICA
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Table[d[n], {n, 1, 12}]
TableForm[%]
f[n_] := Length[Select[d[2 n], First[#] <= n &]]
Table[f[n], {n, 1, 20}] (* A079122 *)
(* Clark Kimberling, Mar 13 2012 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
Table[SeriesCoefficient[Product[1 + x^(k/2), {k, 1, n}], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Jan 16 2024 *)
PROG
(Haskell)
a079122 n = p [1..n] (2 * n) where
p _ 0 = 1
p [] _ = 0
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Mar 16 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 27 2002
STATUS
approved