login
A079122
Number of ways to partition 2*n into distinct positive integers not greater than n.
11
1, 0, 0, 1, 1, 3, 5, 8, 13, 21, 31, 46, 67, 95, 134, 186, 253, 343, 461, 611, 806, 1055, 1369, 1768, 2270, 2896, 3678, 4649, 5847, 7325, 9141, 11359, 14069, 17367, 21363, 26202, 32042, 39068, 47512, 57632, 69728, 84167, 101365, 121801, 146053, 174777
OFFSET
0,6
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..80 from Reinhard Zumkeller)
FORMULA
a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m<i<j<n & i+j=2*n).
Coefficient of x^(2*n) in Product_{k=1..n} (1+x^k). - Vladeta Jovovic, Aug 07 2003
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 22 2015
EXAMPLE
a(4)=1 [1+3+4=2*4]; a(5)=3 [1+2+3+4=1+4+5=2+3+5=2*5].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) + `if`(i>n, 0, b(n-i, i-1))))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..80); # Alois P. Heinz, Jan 18 2013
MATHEMATICA
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Table[d[n], {n, 1, 12}]
TableForm[%]
f[n_] := Length[Select[d[2 n], First[#] <= n &]]
Table[f[n], {n, 1, 20}] (* A079122 *)
(* Clark Kimberling, Mar 13 2012 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
Table[SeriesCoefficient[Product[1 + x^(k/2), {k, 1, n}], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Jan 16 2024 *)
PROG
(Haskell)
a079122 n = p [1..n] (2 * n) where
p _ 0 = 1
p [] _ = 0
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Mar 16 2012
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 27 2002
STATUS
approved