login
A265070
Coordination sequence for (2,6,infinity) tiling of hyperbolic plane.
27
1, 3, 5, 8, 13, 21, 33, 51, 80, 126, 198, 311, 488, 766, 1203, 1889, 2966, 4657, 7312, 11481, 18027, 28305, 44443, 69782, 109568, 172038, 270125, 424136, 665956, 1045649, 1641823, 2577904, 4047689, 6355468, 9979021, 15668533, 24601905, 38628615, 60652616, 95233542, 149530690, 234785211, 368647368, 578830674
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
FORMULA
G.f.: -(x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^5+x^3+x-1).
a(n) = a(n-1)+a(n-3)+a(n-5) for n>6. - Vincenzo Librandi, Dec 30 2015
MATHEMATICA
CoefficientList[Series[-(x^5 + x^4 + x^3 + x^2 + x + 1) (x + 1)/(x^5 + x^3 + x - 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
PROG
(Magma) I:=[1, 3, 5, 8, 13, 21, 33]; [n le 7 select I[n] else Self(n-1)+Self(n-3)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
(PARI) x='x+O('x^50); Vec((x+1)*(x^5+x^4+x^3+x^2+x+1)/(1-x-x^3-x^5)) \\ G. C. Greubel, Aug 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved