login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020701
Pisot sequences E(3,5), P(3,5).
12
3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141
OFFSET
0,1
COMMENTS
Number of meaningful differential operations of the (n+1)-th order on the space R^3. - Branko Malesevic, Feb 29 2004
Pisano period lengths: A001175. - R. J. Mathar, Aug 10 2012
LINKS
Tanya Khovanova, Recursive Sequences
Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
FORMULA
a(n) = Fib(n+4). a(n) = a(n-1) + a(n-2).
a(n) = A020695(n+1). - R. J. Mathar, May 28 2008
G.f.: (3+2*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-7+3*sqrt(5))+(1+sqrt(5))^n*(7+3*sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016
E.g.f.: (7*sqrt(5)*sinh(sqrt(5)*x/2) + 15*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, Jun 05 2016
EXAMPLE
Meaningful second-order differential operations appear in the form of five compositions as follows: 1. div grad f 2. curl curl F 3. grad div F 4. div curl F (=0) 5. curl grad f (=0)
Meaningful third-order differential operations appear in the form of eight compositions as follows: 1. grad div grad f 2. curl curl curl F 3. div grad div F 4. div curl curl F (=0) 5. div curl grad f (=0) 6. curl curl grad f (=0) 7. curl grad div F (=0) 8. grad div curl F (=0)
MATHEMATICA
CoefficientList[Series[(-2 z - 3)/(z^2 + z - 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{1, 1}, {3, 5}, 40] (* Harvey P. Dale, Apr 22 2013 *)
PROG
(PARI) a(n)=fibonacci(n+4) \\ Charles R Greathouse IV, Jan 17 2012
(Magma) [Fibonacci(n-4): n in [8..80]]; // Vincenzo Librandi, Jul 12 2015
CROSSREFS
Subsequence of A020695 and hence A000045. See A008776 for definitions of Pisot sequences.
Sequence in context: A265069 A265070 A071679 * A024885 A180459 A133605
KEYWORD
nonn,easy
STATUS
approved