The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020704 Pisot sequences E(3,10), P(3,10). 1
 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 141481, 467280, 1543321, 5097243, 16835050, 55602393, 183642229, 606529080, 2003229469, 6616217487, 21851881930, 72171863277, 238367471761, 787274278560, 2600190307441, 8587845200883, 28363725910090 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016) FORMULA a(n) = 3*a(n-1) + a(n-2) (holds at least up to n = 1000 but is not known to hold in general). Conjectures from Colin Barker, Jun 05 2016: (Start) a(n) = (2^(-1-n)*((3-sqrt(13))^n*(-11+3*sqrt(13)) + (3+sqrt(13))^n*(11+3*sqrt(13))))/sqrt(13). G.f.: (3+x) / (1-3*x-x^2). (End) Theorem: For E(3,10), a(n) = 3 a(n - 1) + a(n - 2) for n>=2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016 MATHEMATICA RecurrenceTable[{a[0] == 3, a[1] == 10, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1/2]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *) PROG (Magma) Exy:=[3, 10]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..30]]; // Bruno Berselli, Feb 05 2016 CROSSREFS This is a subsequence of A006190. See A008776 for definitions of Pisot sequences. Sequence in context: A271943 A255116 A006190 * A289450 A113299 A126931 Adjacent sequences: A020701 A020702 A020703 * A020705 A020706 A020707 KEYWORD nonn AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 18:50 EDT 2024. Contains 373707 sequences. (Running on oeis4.)