login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A018920
Pisot sequence T(3,10), a(n) = floor(a(n-1)^2/a(n-2)).
2
3, 10, 33, 108, 353, 1153, 3766, 12300, 40172, 131202, 428506, 1399501, 4570771, 14928140, 48755311, 159234864, 520061125, 1698519827, 5547366384, 18117700664, 59172417076, 193257136076, 631177877968, 2061427183105, 6732621943159, 21988745758766
OFFSET
0,1
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
a(n) = 3*a(n-1) + a(n-2) - a(n-4) - a(n-5) - a(n-6) (holds at least up to n = 1000 but is not known to hold in general).
MAPLE
PisotT := proc(a0, a1, n)
option remember;
if n = 0 then
a0 ;
elif n = 1 then
a1;
else
floor( procname(a0, a1, n-1)^2/procname(a0, a1, n-2)) ;
end if;
end proc:
A018920 := proc(n)
PisotT(3, 10, n) ;
end proc: # R. J. Mathar, Feb 13 2016
MATHEMATICA
RecurrenceTable[{a[0] == 3, a[1] == 10, a[n] == Floor[a[n - 1]^2/a[n - 2] ]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *)
PROG
(Magma) Txy:=[3, 10]; [n le 2 select Txy[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..30]]; // Bruno Berselli, Feb 05 2016
(PARI) pisotT(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
a
}
pisotT(50, 3, 10) \\ Colin Barker, Jul 29 2016
CROSSREFS
See A008776 for definitions of Pisot sequences.
Sequence in context: A126184 A292397 A060557 * A271943 A255116 A006190
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by David W. Wilson
STATUS
approved