login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A018922
Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,16).
2
8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 82392, 158816, 306128, 590081, 1137418, 2192444, 4226072, 8146016, 15701951, 30266484, 58340524, 112454976, 216763936, 417825921, 805385358, 1552430192, 2992405408, 5768046880
OFFSET
0,1
COMMENTS
Not to be confused with the Pisot T(8,16), which is essentially A000079. - R. J. Mathar, Feb 13 2016
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
a(n) = 2*a(n-1) - a(n-5).
a(n) = A107066(n+3). - Vladimir Joseph Stephan Orlovsky, Jul 08 2011
O.g.f: -(-8+x^2+2*x^3+4*x^4)/((x-1)*(x^4+x^3+x^2+x-1)) = (1/3)/(x-1)+(1/3)*(-13*x^3-20*x^2-24*x-25)/(x^4+x^3+x^2+x-1) . - R. J. Mathar, Dec 02 2007
MATHEMATICA
Drop[CoefficientList[Series[1/(1 - 2*z + z^5), {z, 0, 100}], z], 3] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
RecurrenceTable[{a[1] == 8, a[2] == 16, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *)
LinearRecurrence[{2, 0, 0, 0, -1}, {8, 16, 31, 60, 116}, 40] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
T(8, 16, 40) \\ Colin Barker, Feb 14 2016
(Magma) Tiv:=[8, 16]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
CROSSREFS
Cf. A107066.
Sequence in context: A332918 A363280 A266086 * A290287 A303981 A285315
KEYWORD
nonn,easy
AUTHOR
STATUS
approved