The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265075 Coordination sequence for (3,4,4) tiling of hyperbolic plane. 27
 1, 3, 6, 11, 18, 29, 46, 73, 116, 183, 290, 459, 726, 1149, 1818, 2877, 4552, 7203, 11398, 18035, 28538, 45157, 71454, 113065, 178908, 283095, 447954, 708819, 1121598, 1774757, 2808282, 4443677, 7031440, 11126179, 17605478, 27857979, 44080994, 69751437, 110370990, 174645225, 276349380, 437280663, 691929826 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1. M. O'Keeffe, Coordination sequences for hyperbolic tilings, Zeitschrift für Kristallographie, 213 (1998), 135-140 (see last table, row 6.8.8H). Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,1,0,1,-1). FORMULA G.f.: (x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-2*x^3-x^2+1). a(n) = a(n-1)+a(n-3)+a(n-5)+a(n-7)-a(n-8) for n>8. - Vincenzo Librandi, Dec 30 2015 MATHEMATICA CoefficientList[Series[(x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^4 - 2 x^3 - x^2 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *) PROG (Magma) I:=[1, 3, 6, 11, 18, 29, 46, 73, 116]; [n le 9 select I[n] else Self(n-1)+Self(n-3)+Self(n-5) + Self(n-7)-Self(n-8): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015 (PARI) x='x+O('x^50); Vec((x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-2*x^3-x^2+1)) \\ G. C. Greubel, Aug 07 2017 CROSSREFS Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077. Sequence in context: A286272 A212147 A066778 * A147079 A281572 A152074 Adjacent sequences: A265072 A265073 A265074 * A265076 A265077 A265078 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 17:26 EDT 2023. Contains 361551 sequences. (Running on oeis4.)