

A281572


Expansion of Sum_{i>=1} mu(i)^2*x^i/(1  x^i) / Product_{j>=1} (1  mu(j)^2*x^j), where mu() is the Moebius function (A008683).


3



1, 3, 6, 11, 18, 30, 45, 68, 98, 139, 192, 266, 357, 478, 632, 828, 1074, 1386, 1769, 2250, 2840, 3566, 4452, 5534, 6842, 8427, 10335, 12624, 15361, 18634, 22519, 27137, 32598, 39047, 46645, 55580, 66050, 78313, 92630, 109330, 128760, 151342, 177517, 207833, 242878, 283326, 329944, 383598, 445246, 516013
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Total number of parts in all partitions of n into squarefree parts (A005117).
Convolution of A034444 and A073576.


LINKS

Table of n, a(n) for n=1..50.
Index entries for related partitioncounting sequences


FORMULA

G.f.: Sum_{i>=1} mu(i)^2*x^i/(1  x^i) / Product_{j>=1} (1  mu(j)^2*x^j).


EXAMPLE

a(4) = 11 because we have [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1] and 2 + 2 + 3 + 4 = 11.


MATHEMATICA

nmax = 50; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1  x^i), {i, 1, nmax}]/Product[1  MoebiusMu[j]^2 x^j, {j, 1, nmax}], {x, 0, nmax}], x]]


CROSSREFS

Cf. A005117, A008683, A034444, A073576.
Sequence in context: A066778 A265075 A147079 * A152074 A123629 A212484
Adjacent sequences: A281569 A281570 A281571 * A281573 A281574 A281575


KEYWORD

nonn


AUTHOR

Ilya Gutkovskiy, Jan 24 2017


STATUS

approved



