|
|
A152074
|
|
Rows sums of triangle A152072.
|
|
2
|
|
|
1, 3, 6, 11, 18, 30, 46, 73, 111, 170, 254, 392, 574, 868, 1294, 1933, 2834, 4267, 6228, 9312, 13674, 20162, 29528, 44132, 63945, 94390, 138562, 203706, 296436, 438976, 635776, 936263, 1367034, 1997200, 2907862, 4290047, 6192784, 9070744, 13248374
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
From David W. Wilson, Jul 07 2016: (Start)
Empirically, it appears that
lim n->inf a(n+3)/a(n) = 3.
lim n->inf a(3n+1)/a(3n) = 312/217.
lim n->inf a(3n+2)/a(3n+1) = 75/52.
lim n->inf a(3n+3)/a(3n+2) = 217/150. (End)
|
|
REFERENCES
|
David W. Wilson, Posting to Sequence Fans mailing List, Mar 11 2009
|
|
LINKS
|
David W. Wilson and Vaclav Kotesovec, Table of n, a(n) for n = 1..2000 (first 1000 terms from David W. Wilson)
|
|
MAPLE
|
A152072 := proc(n, k) mul(floor((n+i)/k), i=0..k-1) ; end: A152074 := proc(n) add( A152072(n, k), k=1..n) ; end: seq(A152074(n), n=1..80) ; # R. J. Mathar, Sep 18 2009
|
|
MATHEMATICA
|
Table[Total@ Map[Product[Floor[(n + i)/#], {i, 0, # - 1}] &, Range@ n], {n, 40}] (* Michael De Vlieger, Jul 09 2016, after Robert G. Wilson v at A152072 *)
|
|
CROSSREFS
|
Sequence in context: A265075 A147079 A281572 * A123629 A212484 A279100
Adjacent sequences: A152071 A152072 A152073 * A152075 A152076 A152077
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Sep 16 2009
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Sep 18 2009
|
|
STATUS
|
approved
|
|
|
|