login
A279100
a(n) = Sum_{k=0..n} ceiling(phi^k), where phi is the golden ratio (A001622).
0
1, 3, 6, 11, 18, 30, 48, 78, 125, 202, 325, 525, 847, 1369, 2212, 3577, 5784, 9356, 15134, 24484, 39611, 64088, 103691, 167771, 271453, 439215, 710658, 1149863, 1860510, 3010362, 4870860, 7881210, 12752057, 20633254, 33385297, 54018537, 87403819, 141422341, 228826144, 370248469, 599074596
OFFSET
0,2
COMMENTS
Partial sums of A169986.
LINKS
FORMULA
G.f.: (1 + x - x^2 - x^3 - x^4)/((1 - x)^2*(1 - 2*x^2 - x^3)).
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
a(n) = (10*n - 5*(-1)^n + 2^(1-n)*sqrt(5)*(5 + 3*sqrt(5))*(1 + sqrt(5))^n + sqrt(5)*2^(1-n)*(3*sqrt(5) - 5) *(1 - sqrt(5))^n - 35)/20.
a(n) ~ phi^(n+2).
MATHEMATICA
Accumulate[Table[Ceiling[GoldenRatio^n], {n, 0, 40}]]
LinearRecurrence[{2, 1, -3, 0, 1}, {1, 3, 6, 11, 18}, 41]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 06 2016
STATUS
approved