|
|
A020956
|
|
a(n) = Sum_{k>=1} floor(tau^(n-k)) where tau is A001622.
|
|
7
|
|
|
1, 2, 4, 8, 14, 25, 42, 71, 117, 193, 315, 514, 835, 1356, 2198, 3562, 5768, 9339, 15116, 24465, 39591, 64067, 103669, 167748, 271429, 439190, 710632, 1149836, 1860482, 3010333, 4870830, 7881179, 12752025, 20633221, 33385263, 54018502, 87403783, 141422304
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Clark Kimberling, Problem 10520, Amer. Math. Mon. 103 (1996) p. 347.
|
|
FORMULA
|
G.f.: x*(1-x^2+x^3)/((1-x-x^2)*(1+x)*(1-x)^2). - Ralf Stephan, Apr 08 2004
a(n) = Lucas(n+1) - floor(n/2) - 1.
a(n) = 2^(-2-n)*((-2)^n - 5*2^n + 2*(1-t)^(1+n) + 2*(1+t)^n + 2*t*(1+t)^n - 2^(1+n)*n) where t=sqrt(5). - Colin Barker, Feb 09 2017
a(n) = Lucas(n+1) - (1/4)*(2*n + 5 - (-1)^n).
E.g.f.: exp(x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)) - (1/2)*((x+2)*cosh(x) + (x+3)*sinh(x)). (End)
|
|
MATHEMATICA
|
LinearRecurrence[{2, 1, -3, 0, 1}, {1, 2, 4, 8, 14}, 40] (* Vincenzo Librandi, Nov 01 2016 *)
|
|
PROG
|
(Python)
prpr = 0
prev = 1
for n in range(2, 100):
print(prev, end=", ")
curr = prpr+prev + n//2
prpr = prev
prev = curr
(PARI) Vec(x*(1-x^2+x^3)/((1-x-x^2)*(1+x)*(1-x)^2) + O(x^50)) \\ Michel Marcus, Nov 01 2016
(Magma)
I:=[1, 2, 4, 8, 14]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-2)-3*Self(n-3)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Nov 01 2016
(Magma) [Lucas(n+1)-(2*n+5-(-1)^n)/4: n in [1..40]]; // G. C. Greubel, Apr 05 2024
(SageMath) [lucas_number2(n+1, 1, -1) -(n+2+(n%2))//2 for n in range(1, 41)] # G. C. Greubel, Apr 05 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|