login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340658
The number of overpartitions of n having more non-overlined parts than overlined parts.
3
0, 1, 2, 4, 8, 14, 25, 41, 67, 105, 163, 246, 368, 540, 784, 1124, 1596, 2242, 3124, 4316, 5918, 8058, 10899, 14651, 19581, 26028, 34417, 45293, 59327, 77372, 100483, 129984, 167502, 215077, 275199, 350966, 446162, 565451, 714515, 900334, 1131370, 1417963
OFFSET
0,3
LINKS
B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
FORMULA
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/Product_{k=1..n} (1-q^k)^2.
EXAMPLE
a(3) = 4 counts the overpartitions [3], [2,1], [1,1,1], and [1',1,1].
MAPLE
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c>0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
MATHEMATICA
b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c>0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jan 15 2021
STATUS
approved