OFFSET
0,3
COMMENTS
Every row has the signature (1,2).
(Among consequences: a(n) read by antidiagonals is
1,
1, 2,
1, 1, 4,
1, 0, 3, 8,
1, -1, 2, 5, 16
1, -2, 1, 2, 11, 32,
1, -3, 0, -1, 6, 21, 64,
... .
The row sums and their first two difference table terms are
1, 3, 6, 12, 23, 45, 88, ... = A086445(n+1) - 1
2, 3, 6, 11, 22, 43, 86, ... = A005578(n+2)
1, 3, 5, 11, 21, 43, 85, ... = A001045(n+2).
The antidiagonal sums are
b(n) = 1, 1, 3, 2, 5, 3, 9, 4, 15, 5, 27, 6, 49, 7, ... .)
FORMULA
A(n,k) = 2^k - n*round(2^k/3).
EXAMPLE
Square array:
1, 2, 4, 8, 16, 32, 64, 128, ... = A000079(n)
1, 1, 3, 5, 11, 21, 43, 85, ... = A001045(n+1)
1, 0, 2, 2, 6, 10, 22, 42, ... = A078008(n)
1, -1, 1, -1, 1, -1, 1, -1, ... = A033999(n)
1, -2, 0, -4, -4, -12, -20, -44, ... = -A084247(n)
1, -3, -1, -7, -9, -23, -41, -87, ... = (-1)^n*A140966(n+1)
1, -4, -2, -10, -14, -34, -62, -130, ... = -A135440(n)
...
MAPLE
A:= (n, k)-> (<<0|1>, <2|1>>^k. <<1, 2-n>>)[1$2]:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 21 2021
MATHEMATICA
A340660[m_, n_] := LinearRecurrence[{1, 2}, {1, m}, {n}]; Table[Reverse[Table[A340660[m, n + m - 2] // First, {m, 2, -n + 3, -1}]], {n, 1, 11}] // Flatten (* Robert P. P. McKone, Jan 28 2021 *)
PROG
(PARI) T(n, k) = 2^k - n*(2^k - (-1)^k)/3;
matrix(10, 10, n, k, T(n-1, k-1)) \\ Michel Marcus, Jan 19 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, Jan 15 2021
STATUS
approved