The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136674 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial p(n,x) with p(0,x) = 1, p(1,x) = 2 - x, p(2,x) = 1 - 4*x + x^2 and p(n,x) = (2-x)*p(n-1,x) - p(n-2,x) if n>2. 9
 1, 2, -1, 1, -4, 1, 0, -8, 6, -1, -1, -12, 19, -8, 1, -2, -15, 44, -34, 10, -1, -3, -16, 84, -104, 53, -12, 1, -4, -14, 140, -258, 200, -76, 14, -1, -5, -8, 210, -552, 605, -340, 103, -16, 1, -6, 3, 288, -1056, 1562, -1209, 532, -134, 18, -1, -7, 20, 363, -1848, 3575, -3640, 2170, -784, 169, -20, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums: A117373(n-1). LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA T(n,k) = 2*T(n-1,k) - T(n-2,k) - T(n-1,k-1). - R. J. Mathar, Jan 12 2011 EXAMPLE Triangle begins as:    1;    2,  -1;    1,  -4,   1;    0,  -8,   6,    -1;   -1, -12,  19,    -8,    1;   -2, -15,  44,   -34,   10,    -1;   -3, -16,  84,  -104,   53,   -12,    1;   -4, -14, 140,  -258,  200,   -76,   14,   -1;   -5,  -8, 210,  -552,  605,  -340,  103,  -16,   1;   -6,   3, 288, -1056, 1562, -1209,  532, -134,  18,  -1;   -7,  20, 363, -1848, 3575, -3640, 2170, -784, 169, -20, 1; MAPLE A136674aux := proc(n) option remember; if n = 0 then 1; elif n= 1 then 2-x ; elif n= 2 then 1-4*x+x^2 ; else (2-x)*procname(n-1)-procname(n-2) ; end if; end proc: A136674 := proc(n, k) coeftayl(A136674aux(n), x=0, k) ; end proc: # R. J. Mathar, Jan 12 2011 MATHEMATICA (* tridiagonal matrix code*) T[n_, m_, d_]:= If[n==m, 2, If[n==d && m==d-1, -3, If[(n==m-1 || n==m+1), -1, 0]]]; M[d_]:= Table[T[n, m, d], {n, d}, {m, d}]; Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]//Flatten (* polynomial recursion: three initial terms necessary*) p[x, 0]:= 1; p[x, 1]:= (2-x); p[x, 2]:= 1 -4*x +x^2; p[x_, n_]:= p[x, n]= (2-x)*p[x, n-1] - p[x, n-2]; Table[ExpandAll[p[x, n]], {n, 0, Length[g] -1}] (* Third program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, (-1)^n, If[k==0, 3-n, 2*T[n-1, k] -T[n-2, k] -T[n-1, k-1] ]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 12 2020 *) PROG (Sage) @CachedFunction def T(n, k):     if (k<0 or k>n): return 0     elif (k==n): return (-1)^n     elif (k==0): return 3-n     else: return 2*T(n-1, k) - T(n-2, k) - T(n-1, k-1) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020 CROSSREFS Sequence in context: A248939 A106246 A340660 * A144383 A205553 A178411 Adjacent sequences:  A136671 A136672 A136673 * A136675 A136676 A136677 KEYWORD easy,tabl,sign AUTHOR Roger L. Bagula, Apr 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)