login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136674
Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial p(n,x) with p(0,x) = 1, p(1,x) = 2 - x, p(2,x) = 1 - 4*x + x^2 and p(n,x) = (2-x)*p(n-1,x) - p(n-2,x) if n>2.
9
1, 2, -1, 1, -4, 1, 0, -8, 6, -1, -1, -12, 19, -8, 1, -2, -15, 44, -34, 10, -1, -3, -16, 84, -104, 53, -12, 1, -4, -14, 140, -258, 200, -76, 14, -1, -5, -8, 210, -552, 605, -340, 103, -16, 1, -6, 3, 288, -1056, 1562, -1209, 532, -134, 18, -1, -7, 20, 363, -1848, 3575, -3640, 2170, -784, 169, -20, 1
OFFSET
0,2
COMMENTS
Row sums: A117373(n-1).
FORMULA
T(n,k) = 2*T(n-1,k) - T(n-2,k) - T(n-1,k-1). - R. J. Mathar, Jan 12 2011
EXAMPLE
Triangle begins as:
1;
2, -1;
1, -4, 1;
0, -8, 6, -1;
-1, -12, 19, -8, 1;
-2, -15, 44, -34, 10, -1;
-3, -16, 84, -104, 53, -12, 1;
-4, -14, 140, -258, 200, -76, 14, -1;
-5, -8, 210, -552, 605, -340, 103, -16, 1;
-6, 3, 288, -1056, 1562, -1209, 532, -134, 18, -1;
-7, 20, 363, -1848, 3575, -3640, 2170, -784, 169, -20, 1;
MAPLE
A136674aux := proc(n) option remember; if n = 0 then 1; elif n= 1 then 2-x ; elif n= 2 then 1-4*x+x^2 ; else (2-x)*procname(n-1)-procname(n-2) ; end if; end proc:
A136674 := proc(n, k) coeftayl(A136674aux(n), x=0, k) ; end proc: # R. J. Mathar, Jan 12 2011
MATHEMATICA
(* tridiagonal matrix code*)
T[n_, m_, d_]:= If[n==m, 2, If[n==d && m==d-1, -3, If[(n==m-1 || n==m+1), -1, 0]]];
M[d_]:= Table[T[n, m, d], {n, d}, {m, d}];
Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]//Flatten
(* polynomial recursion: three initial terms necessary*)
p[x, 0]:= 1; p[x, 1]:= (2-x); p[x, 2]:= 1 -4*x +x^2;
p[x_, n_]:= p[x, n]= (2-x)*p[x, n-1] - p[x, n-2];
Table[ExpandAll[p[x, n]], {n, 0, Length[g] -1}]
(* Third program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, (-1)^n, If[k==0, 3-n, 2*T[n-1, k] -T[n-2, k] -T[n-1, k-1] ]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==n): return (-1)^n
elif (k==0): return 3-n
else: return 2*T(n-1, k) - T(n-2, k) - T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
CROSSREFS
Sequence in context: A248939 A106246 A340660 * A144383 A205553 A178411
KEYWORD
easy,tabl,sign
AUTHOR
Roger L. Bagula, Apr 05 2008
STATUS
approved