login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136675
Numerator of Sum_{k=1..n} (-1)^(k+1)/k^3.
11
1, 7, 197, 1549, 195353, 194353, 66879079, 533875007, 14436577189, 14420574181, 19209787242911, 19197460851911, 42198121495296467, 6025866788581781, 6027847576222613, 48209723660000029, 236907853607882606477
OFFSET
1,2
COMMENTS
a(n) is prime for n in A136683.
Lim_{n -> infinity} a(n)/A334582(n) = A197070. - Petros Hadjicostas, May 07 2020
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number.
EXAMPLE
The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = a(n)/A334582(n). - Petros Hadjicostas, May 06 2020
MAPLE
map(numer, ListTools:-PartialSums([seq((-1)^(k+1)/k^3, k=1..100)])); # Robert Israel, Nov 09 2023
MATHEMATICA
(* Program #1 *) Table[Numerator[Sum[(-1)^(k+1)/k^3, {k, 1, n}]], {n, 1, 50}]
(* Program #2 *) Numerator[Accumulate[Table[(-1)^(k+1) 1/k^3, {k, 50}]]] (* Harvey P. Dale, Feb 12 2013 *)
PROG
(PARI) a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ Michel Marcus, May 07 2020
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jan 16 2008
STATUS
approved