login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007408 Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3.
(Formerly M4670)
39
1, 9, 251, 2035, 256103, 28567, 9822481, 78708473, 19148110939, 19164113947, 25523438671457, 25535765062457, 56123375845866029, 56140429821090029, 56154295334575853, 449325761325072949, 2207911834254200646437, 245358578943756786493 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
By Theorem 131 in Hardy and Wright, p^2 divides a(p - 1) for prime p > 5. - T. D. Noe, Sep 05 2002
p^3 divides a(p - 1) for prime p = 37. Primes p such that p divides a((p + 1)/2) are listed in A124787(n) = {3, 11, 17, 89}. - Alexander Adamchuk, Nov 07 2006
a(n)/A007409(n) is the partial sum towards zeta(3), where zeta(s) is the Riemann zeta function. - Alonso del Arte, Dec 30 2012
See the Wolfdieter Lang link under A103345 on Zeta(k, n) with the rationals for k=1..10, g.f.s and polygamma formulas. - Wolfdieter Lang, Dec 03 2013
Denominator of the harmonic mean of the first n cubes. - Colin Barker, Nov 13 2014
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 104.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), 10.6.7, Section 4.3.2.
FORMULA
Sum_{k = 1 .. n} 1/k^3 = sqrt(sum_{j = 1 .. n} sum_{i = 1 .. n} 1/(i * j)^3). - Alexander Adamchuk, Oct 26 2004
MAPLE
A007408:=n->numer(sum(1/k^3, k=1..n)); map(%, [$1..20]); # M. F. Hasler, Nov 10 2006
MATHEMATICA
Table[Numerator[Sum[1/k^3, {k, n}]], {n, 10}] (* Alonso del Arte, Dec 30 2012 *)
Table[Denominator[HarmonicMean[Range[n]^3]], {n, 20}] (* Harvey P. Dale, Aug 20 2017 *)
Accumulate[1/Range[20]^3]//Numerator (* Harvey P. Dale, Aug 28 2023 *)
PROG
(PARI) a(n)=numerator(sum(k=1, n, 1/k^3)) \\ Charles R Greathouse IV, Jul 19 2011
(Python)
from fractions import Fraction
from itertools import accumulate, count, islice
def A007408gen(): yield from map(lambda x: x.numerator, accumulate(Fraction(1, k**3) for k in count(1)))
print(list(islice(A007408gen(), 20))) # Michael S. Branicky, Jun 26 2022
CROSSREFS
Sequence in context: A012202 A012098 A012072 * A066989 A249593 A160501
KEYWORD
nonn,frac
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 14:01 EDT 2024. Contains 371635 sequences. (Running on oeis4.)