login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066989
a(n) = (n!)^3 * Sum_{i=1..n} 1/i^3.
14
1, 9, 251, 16280, 2048824, 444273984, 152759224512, 78340747014144, 57175952894078976, 57223737619918848000, 76212579497951858688000, 131758938842553681444864000, 289584291977410916858462208000, 794860754824699647616459210752000
OFFSET
1,2
COMMENTS
p^2 divides a(p-1) for prime p>5. - Alexander Adamchuk, Jul 11 2006
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..181 (terms 1..50 from T. D. Noe)
FORMULA
Recurrence: a(1) = 1, a(2) = 9, a(n+2) = (2*n+3)*(n^2+3*n+3)*a(n+1) - (n+1)^6*a(n). b(n) = n!^3 satisfies the same recurrence with the initial conditions b(1) = 1, b(2) = 8. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(1-1^6/(9-2^6/(35-3^6/(91-...-(n-1)^6/((2n-1)*(n^2-n+1)))))) for n >= 2, leading to the infinite continued fraction expansion zeta(3) = 1/(1-1^6/(9-2^6/(35-3^6/(91-...-(n-1)^6/((2n-1)*(n^2-n+1)-...))))). Compare with A001819. - Peter Bala, Jul 19 2008
a(n) ~ Zeta(3) * (2*Pi)^(3/2) * n^(3*n+3/2) / exp(3*n). - Vaclav Kotesovec, Aug 27 2017
Sum_{n>=1} a(n) * x^n / (n!)^3 = polylog(3,x) / (1 - x). - Ilya Gutkovskiy, Jul 14 2020
MATHEMATICA
f[k_] := k^3; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 22}] (* A066989 *)
(* Clark Kimberling, Dec 29 2011 *)
Table[(n!)^3 * Sum[1/i^3, {i, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 27 2017 *)
CROSSREFS
Cf. A007408.
Column k=3 of A291556.
Sequence in context: A012098 A012072 A007408 * A249593 A160501 A075987
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 27 2002
STATUS
approved