The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143004 a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+13)*a(n) - n^6*a(n-1). 6
 0, 1, 45, 4211, 704120, 191875384, 79755181632, 48072816950976, 40372248180436992, 45735898093934800896, 68049684624570789888000, 130036437291331549384704000, 313117351023401464093212672000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the case m = 2 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+2*m^2+2*m+1 )*a(n) - n^6*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series sum {k = 1..inf} 1/k^3 for Apery's constant zeta(3). For remarks on the general theory see A143003 (m=1). For other cases see A066989 (m=0), A143005 (m=3) and A143006 (m=4). REFERENCES Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..180 FORMULA a(n) = n!^3*p(n)*sum {k = 1..n} 1/(k^3*p(k-1)*p(k)), where p(n) = (3*n^4+6*n^3+9*n^2+6*n+2)/2. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+13)*a(n) - n^6*a(n-1). The sequence b(n):= n!^3*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 13. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(13- 1^6/(45- 2^6/(95- 3^6/(175-...- (n-1)^6/((2*n-1)*(n^2-n+13)))))), for n >=2. The behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = sum {k = 1..inf} 1/(k^3*p(k-1)*p(k)) = 1/(13- 1^6/(45- 2^6/(95- 3^6/(175-...- n^6/((2*n+1)*(n^2+n+13)-...))))) = zeta(3) - (1 + 1/2^3), where the final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii) at x = 2]. MAPLE p := n -> (3*n^4+6*n^3+9*n^2+6*n+2)/2: a := n -> n!^3*p(n)*sum (1/(k^3*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..14) MATHEMATICA RecurrenceTable[{a==0, a==1, a[n+1]==(2n+1)(n^2+n+13)a[n]-n^6 a[n-1]}, a, {n, 20}] (* Harvey P. Dale, Jan 23 2012 *) CROSSREFS Cf. A066989, A143003, A143005, A143006, A143007. Sequence in context: A025755 A213880 A113630 * A004707 A220094 A274603 Adjacent sequences:  A143001 A143002 A143003 * A143005 A143006 A143007 KEYWORD easy,nonn AUTHOR Peter Bala, Jul 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 11:25 EDT 2022. Contains 353745 sequences. (Running on oeis4.)