|
|
A004707
|
|
Expansion of 1/(10 - Sum_{k=1..9} exp(k*x)).
|
|
3
|
|
|
1, 45, 4335, 625725, 120423183, 28969886925, 8363051069055, 2816627967125325, 1084142007795994863, 469456525723134676365, 225871834295620808030175, 119542260051513982346194125, 69019118254891394556412984143
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
Equals expansion of 1/(10-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)-exp(6*x)-exp(7*x)-exp(8*x)-exp(9*x))
|
|
MATHEMATICA
|
With[{nn=200}, CoefficientList[Series[1/(10-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]-Exp[5*x]-Exp[6*x]-Exp[7*x]-Exp[8*x]-Exp[9*x]), {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Jun 15 2012 *)
With[{nn=20}, CoefficientList[Series[1/(10-Total[Table[Exp[n*x], {n, 9}]]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 15 2015 *)
|
|
PROG
|
(PARI) x='x+O('x^30); Vec(serlaplace(1/(10-sum(k=1, 9, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(10-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)-Exp(8*x)-Exp(9*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|