|
|
A004709
|
|
Cubefree numbers: numbers that are not divisible by any cube > 1.
|
|
168
|
|
|
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Cubefree.
|
|
FORMULA
|
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022
|
|
MAPLE
|
isA004709 := proc(n)
local p;
for p in ifactors(n)[2] do
if op(2, p) > 2 then
return false;
end if;
end do:
true ;
end proc:
|
|
MATHEMATICA
|
Select[Range[6!], FreeQ[FactorInteger[#], {_, k_ /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
|
|
PROG
|
(PARI) {a(n)= local(m, c); if(n<2, n==1, c=1; m=1; while( c<n, m++; if( 3>vecmax(factor(m)[, 2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
(Haskell)
a004709 n = a004709_list !! (n-1)
a004709_list = filter ((== 1) . a212793) [1..]
(Python)
from sympy.ntheory.factor_ import core
def ok(n): return core(n, 3) == n
(Python)
from sympy import mobius, integer_nthroot
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|